Sentence Examples

  • But, as is evident, the node or cusp is not a point of contact of a proper tangent from the arbitrary point; we have, therefore, for a node a diminution and for a cusp a diminution 3, in the number of the intersections; and thus, for a curve with 6 nodes and K cusps, there is a diminution 26+3K, and the value of n is n= m (m - I)-26-3K.
  • As regards the so-called hyperbolisms, observe that (besides the single asymptote) we have in the case of those of the hyperbola two parallel asymptotes; in the case of those of the ellipse the two parallel asymptotes become imaginary, that is, they disappear; and in the case of those of the parabola they become coincident, that is, there is here an ordinary asymptote, and a special asymptote answering to a cusp at infinity.
  • Similarly a cubic through the two circular points is termed a circular cubic; a quartic through the two points is termed a circular quartic, and if it passes twice through each of them, that is, has each of them for a node, it is termed a bicircular quartic. Such a quartic is of course binodal (m = 4, 6= 2, K = o); it has not in general, but it may have, a third node or a cusp. Or again, we may have a quartic curve having a cusp at each of the circular points: such a curve is a " Cartesian," it being a complete definition of the Cartesian to say that it is a bicuspidal quartic curve (m= 4, 6 = o, K= 2), having a cusp at each of the circular points.
  • The curve is symmetrical about the axis of x, and consists of two infinite branches asymptotic to the line BT and forming a cusp at the origin.
  • Molars with quadrate crowns and a blunt conical cusp at each corner, the last notably smaller than the rest, sometimes rudimentary or absent.