The hyperbola which has for its transverse and conjugate axes the transverse and conjugate axes of another hyperbola is said to be the conjugate hyperbola.
But if the pressure-curve is a straight line F'CP sloping upwards, cutting AM behind A in F', the energy-curve will be a parabola curving upwards, and the velocity-curve a hyperbola with center at F'.
A relation which is of historical interest connects the logarithmic function with the quadrature of the hyperbola, for, by considering the equation of the hyperbola in the form xy=const., it is evident that the area included between the arc of a hyperbola, its nearest asymptote, and two ordinates drawn parallel to the other asymptote from points on the first asymptote distant a and b from their point of intersection, is proportional to log bla.
When the conjugate axis of the hyperbola increases without limit, the loops of the nodoid are crowded on one another, and each becomes more nearly a ring of circular section, without, however, ever reaching this form.
A solution by means of the parabola and hyperbola was given by Dionysodorus of Amisus (c. 1st century B.c), and a similar problem - to construct a segment equal in volume to a given segment, and in surface to another segment - was solved by the Arabian mathematician and astronomer, Al Kuhi.