Under the general heading "Analysis" occur the subheadings "Foundations of Analysis," with the topics theory of functions of real variables, series and other infinite processes, principles and elements of the differential and of the integral calculus, definite integrals, and calculus of variations; "Theory of Functions of Complex Variables," with the topics functions of one variable and of several variables; "Algebraic Functions and their Integrals," with the topics algebraic functions of one and of several variables, elliptic functions and single theta functions, Abelian integrals; "Other Special Functions," with the topics Euler's, Legendre's, Bessel's and automorphic functions; "Differential Equations," with the topics existence theorems, methods of solution, general theory; "Differential Forms and Differential Invariants," with the topics differential forms, including Pfaffians, transformation of differential forms, including tangential (or contact) transformations, differential invariants; "Analytical Methods connected with Physical Subjects," with the topics harmonic analysis, Fourier's series, the differential equations of applied mathematics, Dirichlet's problem; "Difference Equations and Functional Equations," with the topics recurring series, solution of equations of finite differences and functional equations.
He appears to have attended Dirichlet's lectures on theory of numbers, theory of definite integrals, and partial differential equations, and Jacobi's on analytical mechanics and higher algebra.
He also showed that every equation of an even degree must have at least one real quadratic factor, reduced the solution of linear differential equations to definite integrals, and furnished an elegant method by which the linear partial differential equation of the second order might be solved.
The integrals are then properly functions of the direction in which the light is to be estimated.
We will now apply the integrals (2) to the case of a rectangular aperture of width a parallel to x and of width b parallel to y.