Denoting the cross-section a of a filament by dS and its mass by dm, the quantity wdS/dm is called the vorticity; this is the same at all points of a filament, and it does not change during the motion; and the vorticity is given by w cos edS/dm, if dS is the oblique section of which the normal makes an angle e with the filament, while the aggregate vorticity of a mass M inside a surface S is M - l fw cos edS.
We can obtain a pertinent illustration from the motion of a vortex ring in a fluid; if the circular core of the ring is thin compared with its diameter, and the vorticity is not very great, it is the vortical state of motion that travels across the fluid without transporting the latter bodily with it except to a slight extent very close to the core.
The process, positive vorticity advection, is usually abbreviated to PVA.
The periodic shedding of the tip vortex at the blade tip is also observed in vorticity contour plots measured at the of axial planes.