On these the belt of greatest density can be easily traced, and it follows very closely the course of the Milky Way; but, whereas the latter is a belt having rather sharply defined boundaries, the star-density decreases gradually and continuously from the galactic equator to the galactic poles.
According to their results the star-density increases continuously from 109 per square degree at the poles to 2019 along the galactic equator.
Imagine this stratum to be uniformly filled with stars (of course in the actual universe instead of sharply defined boundaries AB and CD, we shall have a gradual thinning out of the stars) it follows that in the two directions SP and SP' the fewest stars will be seen; these then are the directions of the galactic poles.
That the sun is nearly midway between the two boundary planes can be tested by comparing the star-densities of the northern and southern galactic hemispheres.
If, instead of considering the whole mass of stars, attention is directed to those of large proper motion, which are therefore in the mean relatively near us, the crowding to the galactic plane is much less noticeable, if not indeed entirely absent.