Legendre, in 1783, extended Maclaurin's theorem concerning ellipsoids of revolution to the case of any spheroid of revolution where the attracted point, instead of being limited to the axis or equator, occupied any position in space; and Laplace, in his treatise Theorie du mouvement et de la figure elliptique des planetes (published in 1784), effected a still further generalization by proving, what had been suspected by Legendre, that the theorem was equally true for any confocal ellipsoids.
The varying direction of the inclining couple Pc may be realized by swinging the weight P from a crane on the ship, in a circle of radius c. But if the weight P was lowered on the ship from a crane on shore, the vessel would sink bodily a distance P/wA if P was deposited over F; but deposited anywhere else, say over Q on the water-line area, the ship would turn about a line the antipolar of Q with respect to the confocal ellipse, parallel to FF', at a distance FK from F FK= (k2-hV/A)/FQ sin QFF' (2) through an angle 0 or a slope of one in m, given by P sin B= m wA FK - W'Ak 2V hV FQ sin QFF', (3) where k denotes the radius of gyration about FF' of the water-line area.
In a similar way the more general state of motion may be analysed, given by w =r ch2('-y), y =a+, i, (26) as giving a homogeneous strain velocity to the confocal system; to which may be added a circulation, represented by an additional term in w.
When the liquid is bounded externally by the fixed ellipsoid A = A I, a slight extension will give the velocity function 4 of the liquid in the interspace as the ellipsoid A=o is passing with velocity U through the confocal position; 4 must now take the formx(1'+N), and will satisfy the conditions in the shape CM abcdX ¢ = Ux - Ux a b x 2+X)P Bo+CoB I - C 1 (A 1 abcdX, I a1b1cl - J o (a2+ A)P and any'confocal ellipsoid defined by A, internal or external to A=A 1, may be supposed to swim with the liquid for an instant, without distortion or rotation, with velocity along Ox BA+CA-B 1 -C1 W'.
The extension to the case where the liquid is bounded externally by a fixed ellipsoid X= X is made in a similar manner, by putting 4 = x y (x+ 11), (io) and the ratio of the effective angular inertia in (9) is changed to 2 (B0-A0) (B 1A1) +.a12 - a 2 +b 2 a b1c1 a -b -b12 abc (Bo-Ao)+(B1-A1) a 2 + b 2 a1 2 + b1 2 alblcl Make c= CO for confocal elliptic cylinders; and then _, 2 A? ?